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Basic objective: numerical modeling problems of heterogeneous
mechanics.

Term “heterogeneous”: non-uniform medium that consists of several
materials (fractions) with different physical and mechanical properties.
Each fraction can be in either gas, liquid, or solid phase.

Liquid and solid fractions can be in continuous, or dispersed phase due
to material fracture and fragmentation.

Basic interests: multi-D intensive dynamical processes with large
deformation of the medium.

Way of description: Eulerian continual approach with arbitrary moving
grids - a portion of grid points serve to track only some peculiarities of
the process, as contacts, shocks, detonation waves, etc. Other grid
points move in an appropriate way to maintain the initial grid topology.



PHYSICAL MODEL

The model to be considered is represented by a heterogeneous mixture of
different materials (fractions). In general the fractions (or some of them) can be in

two phases: continuous (CP) and/or dispersed (DP) .

Each CP component occupies a part of the domain; its
distribution is described by the volume fraction o, ; k

: CP DP
=1,..., n, where n is the number of components.

The DP component is characterized by the volume
fraction B, k=1,..., n.

The quantity p=p, +---+ B, is the total volume
fraction of the dispersive phase.

o= a4 + -+ o, represents the total volume of the
continuous phase or porosity, witha + = 1.

Previous meetings (MULTIMAT2011, NMH2012): generalization of the Godunov
method for calculating shocked flows of 2-ph. fluid/suspended solids mixture.

This time: focus on CP modeling (no DP) with the Prandtl-Reuss elasto-plastic
equations and the Von Mises plastic flow rule.



Objective: a numerical approach for modeling the physics of high-rate
elasto-plastic deformation processes in multimaterial medium.

Typical: high-velocity impact of solids: large deformations accompanied by
- nonlinear elasto-plastic shock and rarefaction waves;

- strong displacement of free boundaries and contacts between
interacting media.

Stress and strain relations: presence of the yield surface:
weak discontinuity in functional dependencies.

This results: increased complexity (with respect to g/d) of the wave process:
- loading: one-front elastic, one-front plastic, or two-front elastic-plastic;
- unloading: one-wave elastic, or two-waves elastic-plastic structures.

Therefore: finite deformation in solids requires numerical methods able

- accurately capture variety of waves;
- correctly track the location of deforming contacts and free boundaries.
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GOVERNING EQUATIONS
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Basic approach: Splitting in physics

Use the method of splitting by Marchuk and Yanenko:

a n
A4S L@ =0
o k=1

replace by a set of subsystems:

a;‘f + L (q)=0, k=1.2,.

and solve for the time step At in n stages

qV = anq?), qP =hangY), ., ¢ =1 A qD)

TWO ways of splitting are investigated: l




Method of splitting A:

4 | stage N |l stage h
P PV 0 P 0
i PV i pvivk;' Pi(sik _Sik _ 0 i PV, . 0
ot| PE | dx, | PEV, + 2 (Pvn - Snkvn) 0 ot| pE g 9 o 0
= L_Z pno—k~
oS, /l)Sl.jvk 0 PS; 2up ox, 3 . ox, + S+ Sy + A3,
Eseudo-hydrodynamical stage: frozen Constitutive stage: the grid is frozen in time,
SUPRLBIE SIEEST L6 G oving s i and the equations are integrated for each
track contacts, free boundaries, shocks, computational cell as a system of ODEs.
etc.; resonant non-strictly hyperbolic
system; flux — Rusanov, HLL, Godunov
\__for the uniaxial 1D stress model L J
. . —* A+ S\ . —n+1 (Ag =%
The solution vector is updated as q =1, (Aﬁ q" ) . q" = L, (_N-(j )

Operator L, : second-order accurate Godunov discrete operator with a MUSCL-type cell interpolation

scheme implemented with an explicit-implicit absolutely stable time marching scheme.

Operator L, : second-order 2 stage Runge-Kutta explicit scheme.



Method of splitting B:

) 4

| stage || stage

0
P PV 0 0 0
vy, + P, =S
O A, 9 ST B olmPvi| 9 N 0
at| PE | dx, pEvk+E(P5ikVn) 0 5 OE +a 2(_Snkvn) - 0
n=1 n=
PS, S.v 0 S 2
: i Py V04 == HOVi0, 0

Hydrodynamic stage: no effect of the

Elastic stage: correction due to elastic

dev.stress; strict hyperbolic system - stress and updating deviatoric stresses.

FVM discretization on moving grids with Strict hyperbolic system in conservative
Godunav type flux appr. (Rusanov, Roe, form — FVM with stationary grid, flux: Roe,
HLL); Rusanov, HLL.

- J - J

~
J

lll stage
Plastic stage: correcting solution due to

yo, 0 plasticity and accounting objectivity of the
a | P _ 0 stress tensor (Yaumann derivative); system of
ot| PE 0

ODEs solved with second-order Runge-Kutta
A\ S.w, +S w0, +AS,
P R explicit scheme.




Solving stage I:

Moving grid: unstructured, fixed topology: cell-centred
o(i) control volume method:

. Vi
T —q——Z(l’m qUn) S
— - Normal face velocity U, : GCL: —~= Zl J = ?E’
At
AV, =Volume(o(t), o(t + At)) - volume swept by the face as i(t) ->i(t+At)
1 0
S_ = dver(o(t),o(r+ Ar)) - face average position ’;‘ ZZ Z*
T — 1 2 3
. B (= = . Lo
Local 1D fux: fem—GU, =T"(F-0U,): 0=Tq .
0 1

- 2
F= (/O“n > IOHH o nn > lO“n“l\ O-nk > ,Ollnl-l/ o O-n/ > IOHNE O-nn“n O-nkl'{k o O-n/u/ > pHHS)
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Semi-discrete form:




Solving hydrodynamical stage: numerical flux

D= dg(/’l,Q",Q;‘_’(i)) o-values: accurancy of the scheme: MUSCL approach:

" . q" — 5’Fk - Jacobian
0°=0" +T(rFI-05M4, IV, G" 4 = /q

V. = operator of limited derivative: 7;, °V 0. =C (goo_ ,),—g/),) 0505

Explicit time integration: second-order scheme:

] Y
g =5 {V” ~AXL D,S } s@(ar,g")
N

I

Stability of the operator S ensured by a CFL condition:

(@

At = max[/l
1



Hydrodynamical stage: explicit/implicit scheme

Eliminate the CFL restriction: change to explicit/implicit scheme:

intermediate time level: ° =@t" +(1 —o "™ |
( ) 0<mw<l1

— —~n —n+1
intermediate state vector: ¢ = ®q + (1 - (0)47 !

explicit/implicit scheme: é’”“ — S{”(mﬁr,@’m)

L alge)
absolute stability: @ in each computational cell: @, = min| 1, :

I
(I.Menshov, Y.Nakamura: AIAA J., 2004) - At _

solving explicit/implicit scheme: matrix-free LU-SGS :

- two linear sub-systems
with a lower- and upper- triangular block matrices;

- 2 explicit-type forward and backward sweeps over cells.



Numerical results 1D: loading regimes

Verification: 1D impact problem:

0<x<10 cm, initial velocity u,<O0, S g6
o
P0=O, SO=O 0.02 \\
0 u“=10m/s
aluminum, Mie-Grunaisen EOS. : : . ; i
Theory: b) N  analytica
= numerical
0<|z.10| <uy -1-wave elastic, e
D)
] I )
uy < |uo| <(uy). - 2-wave elastic-plastic o, \
u, = 100 m/s i\¥

|uo| > (uy). - 1-wave plastic: 0
(et )y =33.99m/s , (i, ). =990.98 m/s 0
Calculations: o | o

u, =10,100,1100 m/s g L

u, = 1100 m/s



Numerical results 1D: unloading regimes

Verification: 0<x<10 cm, initial velocity u,>0,

P,=0, S,=0, aluminum, Mie-Grunaisen EOS.
Theory: 0<u, < (”0 )} . 1-wave elastic, ¥, (145 )} . 2-wave elastic-plastic,
(uo)y =33.82m/s  Cafculations: 1, =10m/s , u, =100 m/s

9 o by o
--- analytical 0.2 --- analytical
— numerical — numerical
© .0.05 « i
= O -06
O o
o o
-0.1 -
0™ 10 m/s I
U, = 100 m/s
-0.14 . -14 < |
0 2 5 8 I 0 2 5 8 10
b

X, cm




2D Taylor impact problem: instability of method A

material - Al

Impact velocity — 100m/sec
Geometry:

L=4cm r=0,4cm
Splitting method A

Shear stress distribution:

Sxy
0.14
0.108889
0.0777778
0.0466667
0.0155556

-0.0155556
-0.0466667
-0.0777778
-0.108889
-0.14

t=0.77mks

t=2.33mks

i




2D Taylor impact problem: splitting method B

material - Al

Impact velocity — 100m/sec
Geometry:

L=4cm r=0,4cm

Splitting method B (3 stages)

Shear stress distribution:

Sxy
0.14
0.108889
0.0777778
0.0466667
0.0155556

-0.0155556
-0.0466667
-0.0777778
-0.108889
-0.14

t=0.77mks




Validation: splitting method B.

- Al

material

_ material - Al

Impact velocity — 273m/sec Impact velocity — 373m/sec
Geometry: Geometry:

L=4.694cm r=0,392cm L=2.382cm r=0,392cm

*| Wilkins M.L., Guinan M.W. Impact of cylinders on a rigid boundary // J. Appl. Phys. 1973. V. 44. Ne 3. P.
1200-1216.



Validation: splitting method B

material - Cu
impact velocity — 227m/sec
geometry : L =3.25cm r=0,325cm

t=25*%10"c 0,035 +=80%10"c

PRES
PRES

PR
oces F

0.259091 028 =
0.213636 '
0.168182
0.122727
0.077272
0.031818

-0.013636

_ 117273
1.27% g 1.03131
0.90¢ £ 0.889899
0.54¢ ‘ . 0748485
0.181 i 0607071
-0.181 2 0465657
-0 54¢ L

-0.90¢001s § g?éé;;é -0.059090 oois >
1272 0.0414141 -0.104545

-1.63€ : -0.1 - 0.15

-2 i

*| H.S. Udaykumar, L. Tran, D.M. Belk, K.J. Vanden, «An Eulerian method for computation of multimaterial
impact with ENO shock-capturing and sharp interfaces» Journal of Computational Physics 186 (2003) 136-177




Model Validation Tests (G. Kanel)

To validate the model: experimental data for the shock loading of aluminum and titan samples (G. Kanel).
Plate impact is a 1D problem of interaction of 2 solid samples: target that is initially at rest and flyer plate
(impactor) As

U,

~h 0 target h,

. _—>
impactor /.

1 tz
Basic wave processes: 2F shock structure in \ 4

target and impactor, reflection shocks from free
surfaces, formation of 2F unloading waves, re- =D
flection of unloading waves at the target free surf.

=y

Free surf. velocity time history — image of wave
processes in the target:

t, — elastic precursor;

t, — plastic shock wave;

t; — leading unloading wave;

t, — secondary unloading wave.




Model Validation Tests (G. Kanel)

2 cases of “impactor-target” configuration are considered:

Case 1 Case 2
Parameters Al-Al AL-TS
h, mm 0,85 2
h, mm 4,1 10
U, m/sec 630 705
U, km/sec 315 261,7
D,, km/sec 6,4 6,4
D,, km/sec 6,4 6,15
D. km/sec 5,3975 5,4452
D, km/sec | 35,3975 5,165
t, mks 0,61 1,56
t, mks 0,72 1,843
t; mks 0,884 2,21

mKks




Model Validation Tests (G. Kanel)

Calculations are done for 3 models: 1 )
_ the basic model of Prandt-Reus: $4 AS = 5#8‘3 S| = EY Y=Y,

- relaxation model: accounting finite time of elastic to plastic transition:

( 2
Sgegﬂ(&_w(s)ﬁ 0, an/I|S|<§Y
r l/j(S)=<|S|_2Y
3
N

2
Sl=z=Y
- [5]=3

1 = relaxation time, if t-> 0 - the basic Prandtl-Reuss model.

- stress hardening model: increase in flow resistance in plastic deformation

t
Y=Y, + Ylgf 35 =f\/§ (& . (&) = ‘gp‘ - equivalent plastic strain
L

fracture model: 2-parametric kinetic damage model with integral dissipative energy
criteria for fracture (A. Kisilev, M. Yumashev, 1990, J.Ap.Math.Tech.Phys.)



Model Validation Tests (G. Kanel): Case 1

Parameters
0 400- — experiment
S — ideal plasticity
:)—..Q 300 _r=2-10'9s B Il1 mm 0,85
o h, mm 4,1
100+ 5
U, m/sec 630
O ]
(I) Oil 0.‘2 0.|3 Of4 OiS 0.‘6 0.‘7 O.‘S 0}9 1
t, us
no fracture with fracture model
700 T
600}
500+
® 400+ — experiment »  400r : 7
e Y =0 E — experiment
- 1 o — calculation with fracture
& 300 — Y, =13GPa = 300 1
= —Y,=2GPa >




Model Validation Tests (G. Kanel): Case 2

— experiment
— ideal plasticity

— =5 10‘2 s Parameters
—1=810"s

h. mm

h, mm
U. m/sec

0.2 0.4 0.6 ¢ Of8
, us .
no fracture with fracture model

I T
— experiment
—Y. =0 L — experiment

L — calculation with fracture

—_ Y1 =1.2 GPa
—_ Y1 =3.4 GPa




MULTIMATERIAL (MM) FLOW

Eulerian approach: system of equations describing motion of multimaterial
medium: equilibrium in velocity, pressure, and temperature:

oq  dfi(q)  of(q) dfi(a) _,

ot 0x ady 0z

P pu v oW

pu pu’ +p pouv puw

v ouv v+ p pvw

pw ouw ouv pw’ + p

q= > f1 = > fz = > f3 =

pE (o€ + p)u (pg + p)v (pg + p)w

PP, pup, Pvp, pwp

PBy pufy PvBy PWhy
MIXTURE EQUATIONS of STATE (MEOS)

v N N
l = 20(. =) P

e_Zlﬁiei(paT)_e(paTa/J)la'":/gN) = = IOZ.O(p,T)



CONVENTIONAL GODUNOV METHOD:
NUMERICAL INTERFACE DIFFUSION

« Godunov method can be directly extended for MM flow equations:

— by solving the Riemann problem calculate the cell interface state vector

Q. = (P U, Vie Wi Dy B - B )
— define the interface flux F as follows:

F = F(qe) — ( pekuz (peg +pz)uz peuzﬁ]k IOGuZﬁNk )

« This approach suffers from excessive numerical diffusion: it doesn’t take into account
heterogeneity of the medium in mixed cells, i.e., presence of interphase boundaries;
there is no difference between homogeneous and heterogeneous mixture.

« To reduce numerical diffusion: account sub-cell structure when calculating the flux at
the cell interface separating mixed and pure cells



SPLITTING of PRIMITIVE STATE VECTOR

« Let’s consider primitive state vector in a mixed cell

a=(puvwp B .0..B), VB <I

* For arbitrary j-th component such that g; = 0, we define two primitive state vectors q;

and q,
q=(p% uvwpp,=0..6=1 . py=0)
qQ@Q=(p" uvwp p% L PH=0 0 BYy)

° poj — actual density of j-th component
- Parameters p*, % are defined as follows:

p* = (1- B’ (0% - pB;)
p* = B/ (1 'ﬁ]) 1]

and characterize average density and mass fractions of the mixture without j-th
component.

°* (,and(q, - state vectors of pure j-th component and the rest of the mixture



BOUNDARY REPRESENTATION
COMPOSITE RIEMANN PROBLEM

Let a cell interface separates mixed and
pure cells. Calculating the flux at the
interface we want to account for the subcell
structure in the mixed cell. To do this, the
following procedure is proposed:

In the mixed cell, split the component of the
pure cell calculating split state vectors (,

and (, .
Calculate the volume fraction of the pure
component in the mixed cell.

Locate the boundary parallel the interface at
a distance to be defined by the volume
fraction.

Solve 1D composite Riemann problem with
initial data q;; , q;,, and q,

Use this solution to calculate the composite

numerical flux at the interface. ;
qin qin

q:

.
|
:
.
:
.
|
|
|
L
X,

><V



MIXED PURE

* U, = normal velocity in the mixed cell; U, = contact velocity in primery R.S.
* Q.1 dep Aoz = cOmposite solution at the interface



SUBSONIC CASE

 Number of terms in sum depends on times ratio:

o Ats<t,: AF(qe)
o f, <Atsty MF(q.) T AyF(qe,)
o At> t3: 7\1'F(qe1) + }\'2'F(qe2) + }\‘3.F(qe3)

« State q; differs from states q.,, q., in mass
components



SUPERSONIC CASE

* Qo1 T Yifs de2 = dip2
 Number of terms in sum depends on times ratio:
o At<ty F(q.)
O At > 1:3: }\‘I.F(qel) + )\'2.F(qe2)
- State q_, differs from q_,in mass components




+ States q.; do not differ in mass components

*  Number of terms in sum depends on times ratio; in case of small h number of terms
could be very big; in our calculations we limit number of terms to two



1D TRANSMISSION

time =oms time =oms
*  Problem statement: g | . i
— densities- 7.85 g/cm3; 0.001 g/ g% e
® 06} - 06¢
— Initial pressure - 1 Atm 5 | %’ ;
. . . W 04p 0 04}
— EOS —ideal gas; Mi-Grunaisen &, 2 |
— Domainsize-1.0cm Oé !
0 0.5 1 0 0.5 1
— Steel:0.2cm<x< 0.4 cm; Position, cm Position, cm
— velocity — 0.1 km/s o fime—oms . fime =0 ms
— Number of computational cells £l '%
— -100 > | %
x4 £
— CFL=0.9 B | 2
g -
- 8 O
0 0.5 1 0 0j5 1
Position, cm Position, cm
Ux
.




TWO PLATE INTERFACE

* Problem statement:
Densities: - 7.85 g/cm3; 0.001 g/cm3
Initial pressure - 1 Atm
EOS —ideal gas; Mi-Grunaisen EOS

Domain size - 0.5 cm

Steel impactor: 0.15cm <x< 0.2 cm;

Steel target : 0.2cm <x<0.25cm

impact velocity - 1 km/s

Number of computational cells - 500
CFL=0.9

1 km/s

et

air

impactor

target

Density, g/cmv
-~

Pressure, Atm

time =o ms

@

@

N

o

01 02 03 04 05
Position, cm

o

fime =o ms

0.5}

05+

-5k » : :
0 01 02 03 04 05

Position, cm

air

Velocity, kmys

o
™ -

o
o

Impactor Target Volume Fraction
=} =)
N S

o

o o o o
N R (o>} o -

=]

time =o ms

0

0.1

02 03 04

Position, cm

time =o ms

0.5

0

0.1

02 03 04
Position, cm

0.5



B U BBLE COLLAPSE A Water Volume Fraction

P 0.9997

* Problem statement:
— Densities- 1.0 g/cm3 ; air - 0.001 g/cm:
— Initial pressure - 1 Atm
— EOS —ideal gas; stiffened gas

- 0.9996

F 50.9995

P -0.9994

— Planar shock wave: M=2

— Domain size - 1.38 cm*1.2 cm
— cells—460*400

— CFL=0.9

Pressure, GPa

air bubble

water




Jetting: Al-Al impact, 2.25 km/sec

velocity Ux, km/sec mass fraction of Al

0.2
0.15
0.1
0
0.2
0.15
0.1
0

0.2 .
0.15
0.1
0

0.2

0.15

0.1

0
0.2

0.15

0.1

0




Jetting: Al-Al impact, 2.25 km/sec Comparison of conventional and
composite Godunov’s fluxes

conventional flux

0.2

0.15

0.1

0.05

composite flux
0.2

0.15
0.1

0.05




CONCLUSIONS

2 ways of splitting elasto-plastic equations have been investigated:
- conventional 2-stage splitting results in typical weak instability because
of resonant-type of hydro-elastic equations;
- this instability is removed by 3-stage (hydro, elaso, plast.) splitting.

Macroscopic Prandtl-Reus model has been tested by high-speed impact
experimens of G. Kanel:
- loading is well matched;
- smooth unloading can not be predicted by the model; it is necessary to
account for dynamics and kinetics of microscopic defects (dislocations
and microcracks).

Considering subcell structure of mixed cells and implementing composite
GodunovV’s flux can greatly improve accuracy of multimaterial calculations
on Euler grids.



Conclusions and future work

A numerical method for calculating elastic-plastic flows on arbitrary moving Eulerian
grids has been developed. Conceptual grounds of the method are 1) splitting in physics re-
sulted in two sub-problems for hydrodynamics and material equations, respectively. 2) use of
a high-accurate Godunov approach for discretizing the hydrodynamic part on arbitrary mov-
ing grids, 3) a hybrid explicit-implicit time marching scheme ensured stable calculations with
a physically reasonable time step (not restricted by any specific stability conditions).

A detail analysis of self-similar solutions has been carried out for a simplified 1D model
with the assumption of uniaxial deformations. In particular, different shock wave structures in
an elasto-plastic material have been obtained depending on shock intensity. These are one-
wave elastic, two-wave elasto-plastic. and one-wave plastic shock waves. Analytical solutions
for these types of waves have been obtained. Also. self-similar expansion waves have been
investigated. It was shown that two types of expansion wave can occur, viz., one-wave elastic
and two wave elasto-plastic. Correspondent analytical solutions for these types of expansion
have been found.

The present numerical method has verified by computing these analytical solutions. and
has applied to calculations of two benchmarks - collapse of a cylindrical beryllium shell and
Taylor impact problem. The method has been verified by calculating the problems with pre-
sented analytical solutions, and also comparing on some test problems calculated by other au-
thors with different numerical methods.




Analytical solutions

1D model (uniaxial strain):

op N 5(,011) _0 - 8(,01,,1)+ a(puz —O') _0 - 5(,0E) N 5(,011E o ) _0
Ot ox ’ Ot Ox ’ ot Ox

deviatoric stress: S=S5,, O=—-p+3S

%Y, if p<py
4 P D '
S(p):<S ——,uln , it p, <p<p;
3 Po
-%Y, if p>p'

Apply to: structures of a shock wave and a self-similar rarefaction wave.




Shock wave structure

Rankine-Hugoniot conditions : VJ _ D[cj ]

mass flow rate: m = p(u—D)= p,(u,—D)

1
Hugoniot adiabate (HA): e—e, = E(V —v, o +0,).

2
Raleigh-Michelson (RM) line: & —a, =(m) (v —v,)

Intersection of HAand RM in 2~V plane: shock wave solution.

Important point: HA and RM have a week discontinuity at V =V

m : relative positions of the HA and RM curves in the p —V plane.

~

- \2 - \2 2 4 v .
(m) 2> (m)o = PoCo T Lo {? 7. —FSO} : the HA and the RM intersect.

m=m, :weak shock (a characteristics). HA and RM slopes coincide.



Shock wave structure: one-wave

3 possible cases of intersection:

p“ pl\
5] IS\ .
‘l) Vo v v vy tlfo v 1 vy 1 v
M just above m, : one m=m, : A=Y: another | " > 1y : one
intersection point HA and solution B: two solutions: | Intersection point HA

RM: A<Y (in[vi.v, |)no  |weak (A- Vi) Py )and  |and RM: A>B>Y (in
Y-condition: one-wave strong (B- V< v, vo<vy ): one-wave

elastic shock. P >p; ) plastic shock.

Thus: no one-wave shock structure found for the middle part v € [V* , V;] !




Shock wave structure: two-wave

Middle part v € [vv;] . two-front shock structure:

P, : Leading front: elastic precursor; 17 =My -

+ +
compressive yielding: V =Vy, P = Py

Secondary wave: plastic compressive wave : moves

in the material compressed by the precursor to the

P yield point:

m, = ,O(l/ _Dz)z P; (”; _D’)

Po e mmmm mmmm e mm e mm—— m— g ———

<

v VI._ Vv 0 v

m; € |:n'7_;0 : m;]
m,, : RM slope at the Y-point = HA slope at the Y-point for the plastic part.

- 2 + + 2 1 2 | + +
1y, =(pyc},) _E(SO —;Y)pry

m, =m, : elastic precursor and secondary plastic wave coincides:

one-wave structure (B).




Shock wave structure

3 types of shock wave structures in elasto-plastic materials: one-front

elastic, two-front with an elastic precursor, and one-front plastic.
D D, D D

—

.

q |9 q‘qY do q | 49

.
>

*

v vy v

lllustration: impact problem (uniaxial approximation): impact velocity % ,

initial parameters Po =5,=0 , EOS Mi-Grunaisen.

| aluminum | copper | berillium critical parameters

material constants (11 )y, s 33.99 4.75 18.13

P, ke/m’ 2780 8930 1845 Py, kg/m’ 2794.64 8938.93 1847.02

I, 2.13 2 2 Py, GPa 0.419 0.141 0.335
s 1.338 1.49 1.124 D;, m/s 6485.88 4745.68 16592.24

a,, m/s 5330 3970 12870 (21, )., m/s 990.98 708.26 3290.2
1, GPa 27.6 45 151 p., kg/m’ 3281.35 10496.52 2301.35
Y, GPa 0.29 0.09 0.33 p«, GPa 17.675 29.955 100.502




Rarefaction wave structure

1D model: self-similar solutions of A=x/t:

A=uzxa. av'tvu'=0. au' tvc'=0
a’ =c’ +V(VS—FS)

do ¢

O:. o= O'(v) - an isentrope: defined by integration of R

with o

=0c,=—p,+35, tor vy,

V=V,

g

Q= O'(V) : monotonically increasing,

weak discontinuity at the point

of expansive yielding Yat V =Vy

1 az—FSv+%v,u, v=vy(-0)

) a —ISv, V:v{,(+0)




Rarefaction wave structure

Y point: two types of wave structures:

a) one-front elastic expansion wave: O->A: A, <A</,

2
do ¢ o
=—,> O] _ =0,
dv v =V
Vo SVSV,
du ¢
™ +; uj,_, =,

b) two-wave structure of expansion: O->Y->B: "
elastic precursor : ﬂ; <A< io - O->Y

. . . AP
plastic expansion: 4z SA< A :Y->B o

Vo V;-
do ¢’ _
—=— o| _=o0,
dv v~ vy —
2 —u a e |9\ 4
dv v vy
A A A VI %

one wave



Rarefaction wave structure

lllustration: inverse impact problem (uniaxial approximation):

impact velocity %, |, % :b |

initial parameters p, =35, =0 , EOS: Mi-Grunaisen.

aluminum copper berillium

L L

critical parameters

(u1 ), m/s 33.82 4.73 18.1
Py, kg/m’ 27765.43 8921.07 1842.98
p,, GPa -0.410 -0.140 -0.333
o, GPa 0.604 0.200 0.553




Hydrodynamical stage: flux function

Relative system of coordinates that moves with the interface:

Qia and Qg(i) : un — Z’ln o (/ n

Calculate the relative flux: @ =F (O, Q7 ch(i))

Gas dynamics approaches: Godunov, HLLE, Rusanov,etc.:

D = %[1“:,0 + 13;{,-) — PaF (Qg(i) - Q‘a )]

Absolute flux d3 : recalculation of the components of the relative flux cff

-~ —
J/

Lagrangian stage: TIZF]'" - for O<t<At with 4 =§ at t=0
O

Grid: frozen Calculation ]f[m - LSM



Numerical results

Cylindrical beryllium shell collapse (B. P. Howell, G. I. Ball: JPC: 2002):

converting kinetic energy to internal energy by the mechanism of plastic

distortion: moving grid to track radii.

54 . . .
a | inner radius
) b) 0,101 —— outer radius
44 1 —— analytical outer radius”
0.09 - analytical inner radius*
37 — intrenal energy 1 \
E —— kinetic energy 0,08+
32 24 total energy E 1
TR internal energy* X 0,07
R kinetic energy* 1
| 0,06
0+ 0,05 - St
000 003 006 009 012 0,15 " 000 003 008 008 0412 0415

t(ms) t(ms)

histories of energy distribution inner and outer radius



Numerical results: Taylor impact problem

material - Cu

impact velocity- 150m/s 0, =8930 K2/
time— 0,002 s

size: L=5m r=0,5m Po=0 I'lla
EOS - Mie-Gruneisen S;=0 I'Tla
model — Prandtl - Reus 3040 1/
numerical flux- Rusanov dy = e

moving grid DEN DEN

— 8.96227 8.92227
t=1ms 8.95369 891369
8.9451 ' 8.9051
8.93652 8.80652
8.92793 8.88793
8.91934 887934
8.91076 887076
8.90217 8.86217
8.89359 885359
I SRS ST SN A SN ST SN SN AT ARN SN RN RN A | 8.885 8.845

_1|111||1|1||||||1|||||||||
1 4 5 1 2 3

X
l 8970

*| P.-H. Maire, R. Abgrall, J. Breil, R. Loub’ere and B. Rebourcet «A high-order cell-centered Lagrangian scheme for
solving two-dimensional elastic-plastic flows» Multimat 2011, September 5-9




CmepxeHb Teunopa

material - Cu K =130
impact velocity - 227m/c

time— 0,00008 ¢ =L P
size : L =3.25cm r=0,325cm =433 ooss Lo
EOS- “log” a=51*%10" ' - C *
model — Prandtl - Reus c. =385 [l (ke * K) - B
numerical flux- Rusanov v _ 003 b=
3 0.03
0O, = 8930k / m - §
i PRES E
0.025 H 0.250001 | o5 =
3,00E-007 — B —1 0.213636 E
5 — 0.168182 -
2,50E-007 - e | B 0.122727 E
0.02 = — 00772727 °%[C
2,00E-007 - > — 0.0318182 =
] —— total energy [ | 001306364 -
1,50E-007 Kinetic energy 0.015 -0.0590809| pevs t
internal energy -0.104545
1,00E-007 -0.15 s
5,00E-008 001 o \
0,00E+000 +

T T T T T T T T T 1
0,00 0,02 0,04 0,06 0,08 0.005 0.005

t(ms)

T ll'! T
/ =

[ L] 0 : —
histories of the energy X 001 =
* > § 8 g
| H.S. Udaykumar, L. Tran, D.M. Belk, K.J. Vanden, «An Eulerian method for computation of multimaterial a =2 =2

impact with ENO shock-capturing and sharp interfaces» Journal of Computational Physics 186 (2003) 136—11r



