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Introduction
Context and Objectives

We design contact algorithms for cell-centered lagrangian schemes to
solve most of the problems for which different constraints must be
taken into account

In this presentation, we will focus on impact and pure sliding at
interfacial boundaries between non-mixing media of solid, liquid or gas
nature.

Methods different from the usual master/slave explicit approach based
on Wilkins’ original work in staggered schemes.

Cell-centered lagrangian schemes (GLACE Després, EUCCLHYD Maire)
are usually based on a specific nodal solver to compute the node’s
velocity in order to move the mesh. We replace such nodal solver by a
new elegant method of minimization under constraints.
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The GLACE scheme
Overview for conformal meshes

Semi-discrete numerical approximation of Euler’s equations :

V ′j = (∇xVj · x′) =
∑

r∈N (j)

(Cj,r · ur)

Mjτ
′
j(t) =

∑
r∈N (j)

(Cj,r · ur)

Mju
′
j(t) = −

∑
r∈N (j)

Cj,rpj,r

Mje
′
j(t) = −

∑
r∈N (j)

(Cj,r · ur)pj,r

where Mj mass, Vj volume, τj specific volume, u velocity and e total energy. Cj,r are the corner
vectors.

pj,r is the nodal pressure, based on a Riemann invariant formulation :

pj,r − pj + αj((ur − uj) · nj,r) = 0,

where nj,r =
Cj,r

|Cj,r|
, αj = ρj cj the acoustic impedance and ur the velocity of the r-th node.
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The GLACE scheme
Overview for conformal meshes

The Riemann solver : ∀r ∈ [1 : N ] ,
∑

j∈C(r)

Cj,rpj,r = 0⇐⇒ Arur = br

with

Ar =
∑
jBr

αj (nj,r ⊗ Cj,r)

br =
∑
j∈Br

Cj,rpj +
∑
jBr

αj (nj,r ⊗ Cj,r) uj

The unique solution is

∀r ∈ [1 : N ] , ur = A−1r br

since Ar is a symmetric positive-definite matrix

Nodal velocities are solved independently
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Reformulation of the Riemann solver
Definition of the objective function

Solving ∀r ∈ [1 : N ] , Ar ur = br is equivalent to minimize within the set Rd the following
objective function :

Jr : Rd → R

ur → Jr(ur) =
1

2
(Arur, ur)− (br, ur)

We shall consider here d = 1, 2. Because constraints globally apply on the mesh, it is natural to
define a global objective function J(U) =

∑
r
Jr(ur) where U = (u1,u2, . . . ,uN )t.

It can also be written in a more general form :

J : K→ R

U→ J(U) =
1

2
(AU, U)− (B, U)

where

A =



A1 . . . 0

. . .

... Ar

...

. . .

0 . . . AN

 and B =



b1

...
br
...

bN


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Reformulation of the Riemann solver
Properties of the set K

• unconstrained case K = Rd×N , Umin = A−1B

• constrained case K = {U ∈ Rd×N , F(U) ≤ 0}

where F = (F1(U), . . . , FM (U))T are real functions expressing M constraints applying on all
constrained nodes. {

AUmin − B + λF ′(U) = 0

F(U) ≤ 0

λ lagrange multipliers

Properties

¬ K is non empty
(
0 = (0, . . . , 0)t ∈ K

)
.

­ K is closed.

® K is convex.

¯ If translations Wa = (a, . . . , a)t (a ∈ Rd) are elements of K, then momentum is preserved.

° if ∃µ > 0, (1− µ)U ∈ K and (1 + µ)U ∈ K, then total energy is preserved.

Rem : the most convenient case is that K is a cone : ∀U ∈ K,∀λ > 0, λU ∈ K
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Additional Remarks

No change in the CFL condition :

max
j

(
cj

∆xj

)
∆t ≤ 1

where we choose ∆xj =
Vj∑

r

√
Cj,r · Cj,r

the 2nd law of thermodynamics is satisfied.
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Numerical examples
1D framework

1D Impact Problem of a mobile against a wall

∀t > 0, ∀x ∈ Ω, x(t) ≤ 0

Discrete :

Kn = {U ∈ RN , ∀j ∈ [1 : N ] , xnj+1/2 + ∆tunj+1/2 ≤ 0} = R−

Unconstrained solution : uuncons
N+1/2 = uN + PN−Pext

ρN cN

• if uN+1/2 <
−xn

j+1/2

∆t (inactive constraint), then uN+1/2 = uuncons
N+1/2

• if uN+1/2 ≥
−xn

j+1/2

∆t , then uN+1/2 = −
xn
j+1/2
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Numerical examples
1D framework

Properties of Kn :

¬ Kn is non empty.

­ Kn is closed.

® Kn is convex.

¯ Preservation of momentum As long as impact occurs, uN+1/2 = 0 : there are no
translations Wa with a > 0. Momentum then changes (it decreases).

° Preservation of total energy Over the timestep of impact, uN+1/2 = −
xn
N+1/2

∆t
:

@µ > 0, (1 + µ)uN+1/2 ∈ Kn. Total energy changes (it decreases). This decrease is
O(∆t).
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Numerical examples
1D framework

1D Impact Problem between two mobiles

∀t > 0,∀(x, y) ∈ Ω1 × Ω2, x(t) < y(t)

Kn = {U ∈ RN , ∀(j, k) ∈ [1 : N ]× [N + 1 : 2N ] , xn
j+1/2

+ ∆tun
j+1/2

≤ xn
k+1/2

+ ∆tun
k+1/2

}

Constraint may be reformulated as :

un
Nj+1/2

− un
Nk+1/2

≤
xn
k+1/2−xn

j+1/2

∆t
(= ulim)

Unconstrained solutions :

uuncons
Nj+1/2 = uN +

PN − Pext

ρN cN

uuncons
Nk+1/2 = uN+1 +

Pext − PN+1

ρN+1cN+1
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Numerical examples
1D framework

Properties of Kn :

¬ Kn is non empty.

­ Kn is closed.

® Kn is convex.

¯ Preservation of momentum All the translations are admissible. Momentum is preserved.

° Preservation of total energy At the time of impact,(
un
Nj+1/2

− un
Nk+1/2

)
= ulim : @µ > 0, (1 + µ)U ∈ Kn =⇒ total energy changes (it

decreases). This decrease is O(∆t).
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Additional Remarks

1 In general, the set Kn may be written for the set of nodes within the
mesh which constraints apply on. Others nodal velocities may be
computed with the usual Riemann Solvers → calculation time

2 We use a single mesh

3 We don’t need to compute the time of impact and thus to treat two
distinct cases (for t ≤ tc and t > tc).
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Numerical examples
2D framework

2D Impact Problem of mobile against a wall

∀t > 0, ∀x ∈ Ω, f(x(t)) ≤ 0

xr = (xnr , y
n
r )t unr = (unr , v

n
r )t

Kn = {U ∈ RN , ∀r ∈ [1 : N ] , f(xn+1
r ) ≤ 0}

case of a plane wall (x = 0)

∀r ∈ [1 : N ] , xnr + ∆tunr ≤ 0
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Numerical examples
2D framework

case of a concave wall (x+ y2 = 0)

∀r ∈ [1 : N ] , xnr + ∆tunr + (ynr + ∆tvnr )2 ≤ 0

Rem : Constraints are all independent. We can solve N independent
constrained problems using the Jr functions.
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Numerical examples
2D framework

Properties of K :

¬ K is non empty.

­ K is closed.

® K is convex.

¯ Preservation of momentum As long as impact occurs, (unr .n) = 0 (n
the outward pointing normal of the wall) : there are no translations
Wa with (a · n) < 0. Momentum then changes (it decreases).

° Preservation of total energy Property ¯ is violated each time a node
impacts the wall. Total energy decreases as a consequence, and each
decreases is O(∆t).
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Numerical examples
2D Framework - Case of a convex wall

case of a convex wall (x+ y2 = 0)

∀r ∈ [1 : N ] , xnr + ∆tunr − (ynr + ∆tvnr )2 ≤ 0

Rem : K is concave ! Property ® is not satisfied and the solution might be
non unique =⇒ The good solution is captured by reducing the timestep.
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Numerical examples
2D Framework - Sliding

2D Sliding between two fluids

∀t > 0,∀x ∈ Γ,
(
u(x(t), t)+ − u(x(t), t)−, n(x(t))

)
= 0
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Numerical examples
2D Framework - Sliding

Kn = {U ∈ RN , ∀k ∈ [1 : N ] ,
(
un,+k − un,−k ,nRES

)
= 0}

un,−k = uk

un,+k = un,gk = P k1 unk−1 + P k2 unk+2

P k1 and P k2 ∈ R2×2

nRES =
1

2

(
nnk + nn,gk

)

nn,gk =
(xk−1xk+2)⊥

|xk−1xk+2|⊥
nnk =

∑
j
Cj,r∣∣∣∣∣∑j Cj,r

∣∣∣∣∣
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Numerical examples
2D Framework - Sliding

Kn = {U ∈ RN , ∀k ∈ [1 : N ] ,
(
un,+k − un,−k ,nRES

)
= 0}

Rem : All the constrained node are now coupled. The use of the global
function J is required.

Properties of Kn :

¬ Kn is non empty.

­ Kn is closed.

® Kn is convex.

¯ Preservation of momentum Translations are admissible. Momentum is
preserved.

° Preservation of total energy Kn is a cone. Total Energy is preserved.
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Numerical examples
2D Framework - Sliding

Computation of the cell volume :

The volume of the cell ’j’ obviously depends on k :

Vj =
1

d

∑
r∈Bj

(Cj,r · xr)

=
1

2
(Cj,e · xe + Cj,f · xf + Cj,k−1 · xk−1 + Cj,k+1 · xk+1 + Cj,k · xk)

The full volume is preserved.

No void is created
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Numerical examples
2D Framework - Sliding

Sod test Case with an initial artificial slide line :

Sliding line coincident to the initial discontinuity

Sliding line parallel to the flow

In both cases :

the position of the sliding line, as well as the symetry of the problem, are preserved in both
case.

The convergence of the numerical solution is ensured.

In this case, momentum and total energy are conserved up to ε = 10−17 (Machine epsilon)
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Numerical examples
2D Framework - Sliding

Caramana test Case :
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Numerical examples
2D Framework - Sliding

Sliding Rings test Case :
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Conclusions and perspectives

Our method is based on the reformulation of the usual Riemann solvers used
to compute the nodal velocity.

An objective function is minimized within a set of admissible velocities Kn.

Providing that Kn satisfies the conditions ¬-°, the method preserves mass,
volume, momentum and total energy (up to the precision ε given in the
minimization procedure)

Our numerical test cases prove that the method is easy to implement and
robust.

The method can be extended to the 3D Framework, providing a new relation
for the ghost node velocity

un,gk = Qk
1 uk−1 +Qk

2 uk+1 +Qk
3 uk−2 +Qk

4 uk+2

Several instabilities can be prevented by using the method of stabilization of
B. Després and E. Labourasse (Després, JCP 2012)

Adding several physical phenomena like friction and surface tension at the
interface boundaries.
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