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E\@- ~~ Introduction

Motivation:
» Interested in impact and penetration problems

» Problems involving compressible solids and
fluids, where fluid may become turbulent

> Simplest example (computationally) is a point
source explosion in fluid above a solid surface

» Want to use modern high-order Godunov
methods for fluids (and solids)

Examples of existing Eulerian sharp interface multi-
material methods that provide suitable frameworks:

» Cut cell method [1] (complex,conservative)

» Ghost cell method [2] (low B
complexity,non-conservative) From [2]

[1 ]Barton et al., A conservative level-set based method for compressible solid/fluid problems on
fixed grids, JCP (2011)

[2 1Barton et al., Eulerian adaptive finite-difference method for high-velocity impact and
penetration problems, JCP (2013)
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A%E Overview

1. Models




AE Elids

> It is intended to use existing methods for | The favoured numerical methods:
compressible fluid dynamics that can be

categorised as ILES » Fixed Cartesian meshes
» Therefore we solve inviscid Euler > Cell-centered variables
equations: » Un-split finite difference

discretisation

p PUK » Large numerical stencils
pu n puuk + peg —0 . .
pE pEux +u-exp = » Explicit Runge-Kutta time

integration
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» However, interested in applying low-numerical dissipation methods developed for
explicit LES to solids and these can easily be switched on for fluids also

» What follows therefore forms a basis for use of LES models should they be
required




A@F Solids: hyperelastic model

Usual mass, momentum and energy balance laws supplemented by balance laws for
deformation:
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7~ Solids: inelastic deformations

Associative flow rules:
U — xFe’1 devo _,
Multiplicative decomposition ||devor]| -
F = FeF' Maxwell materials:
Additional rate equations X = lHdevaH
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A@F Solids: complete system

134 equations:

ai 8pu,- o 0
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WS By Ul 1. 7 wave families
o 2. 6 genuinely non-linear waves

3. 7 linear degenerate waves (speed of
entropy wave)

4. Complete set of eigenvectors
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A%E Overview

2. Cut-cell solver




7"~ Cut-cells: Finite volume discretisation

Each component assumed g,
to have governing equa- 2
tions in form:
/ ij )
Ut + V-F=S gm:" g"*’ é’.-::
Method of lines and finite s
volume discretisation: g,
n+1 3
Va,n+1 a,n+1 _ a,n_o,n ¢
ik K = Vik Qe T
t m=1

AT = Vish] dt

ik

Ul

Explicit Runge-Kutta used to solve time integral
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For solids: use fractional stepping to

a,n+1l _o,x _
gk Yk =

a,n+1
q,‘jk

address stiff inelastic source terms p
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E\Q ~~ Cut-cells: small cell problem

=

N '/
For target ‘T’ and associated set S of small cells, fina/ update:

V(Tn+1)q(cn+1) _ V(Tn+1) (n+1)*

- M(fn-%—l)

Small cells

Zs(qgn-i»l)*

=

Target cell

preservation!

) — V(Tn+1)q(Tn+1}* Ts v(n+1)
V(Tn+1) + g Vi)

Pairing method can have significant impact on symmetry
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A@:E Cut-cells: Coupling components

1. Rotate cell averaged values for each
component onto normal to interface

2. Solve multi-material Riemann problem:

q=q+f(o)

3. Rotate solution back

4. Compute interface fluxes using solution

soloul”

Trlarfue
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Closure relations for various scenarios:

>

v vV vV VvV VY

Solid/solid
Solid /vacuum
Solid/fluid
Solid /wall
Fluid/fluid
Fluid /wall
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3. Interface Tracking




A@F Interface tracking

t=0.0 /,,/ .
( 1
Level-sets: A
¢t +u -V =0
Pros:
> Allow slide
t=0.6

» Simplicity (geometry,
advection)

» Allow breakup/merging

» Continuous representation of
surfaces

» Allows use of RK method

Cons:

Material 1

t=03

Interface

Material 2

» Mass errors

fefefefetefetetetefefoifetefefetetetefetete]

» Cost?
(extrapolation,reinitialisation)

Boundary cells <

#—————— Ghost cells.

Tube 1

Tube 2
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A@F Interface tracking

Polygonisation of zero-level-set:
(a) Marching cubes: fastest, but has ambiguous cases 7

(b) Marching tets: divide cube symmetrically into 24 tets; i

e

a4
no ambiguity!

1
@

Provides:
N .
N\ » Material volume
\
» List of interface
—at facets
.
// ) » List of cell wall
[ // facets
y
y
—

Bitwise operations make
this fast!
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A@EE Interface tracking

» Marching tets provides facet
list representing interface

» Relatively straightforward
(and cheap) to rebuild signed
distance function from these

» Can then evolve the vertex
list to represent interface

» As tri set becomes distorted,
can rebuild as before
(locally?)




Q@‘F Overview

4. Numerical methods for material components
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Q@FE High-order in space: WENO

» Fluxes at cell faces; WENO-LLF:

_ et S
8i-12=8_1,, T8 1/

S} ! |
where S, T 1
1 : :
gt = Z(gL+moaqy) ® * — * ®
? -3 2 il i i+l i+2
g = ;(gr—mcar) i-1/2
0.002

Choice of wave-speed:

» basic single wave-speed

uy (cmipss)
5
g
g

» local characteristic decomposition

Characteristic analysis better; both
expensive for solids!




wﬁE High-order in space: WENO

» Need to provide ghost states outside
material regions to complete stencil

» Can extrapolate solution to
multi-material Riemann problem

» In simplest case requires marching of
interpolated values

100
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A@“ﬁE High-order in space: WENO

» When boundaries of same material
collide large stencils cause
n ‘permeation’ effect
O—0 - -
I S N
inter-face

» Effect exacerbated for larger stencils

» Adjust stencil to consider strips of
material regions
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Q@’E High-order in space:

Use WENO:

Hybrid WENOQO /centered

Specifics:

» Around shocks and steep gradients of selected
variables

» At the interfaces

Extension of Hill et al., JCP (2011)

Thesis, Caltech, 2008) adapted to solids:

Shock detection using Riemann based method of Lombardini (M. Lombardini, PhD

lug £ Nl < [T N| < u £ A}, i=1,2,3

» 3rd Order TVD Runge-Kutta
for time integration

» 5th Order WENO

» 6th Order central differences

Assuming - to be Roe average works satisfactorily

Characteristic polynomial:

(u—N)det|Q — (u—A)?| =0
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A%E Overview

5. Examples
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0.004
Z 0
5
. . -0.004
Solid/solid IVP from Barton et al.,
JCP (2010)
» Initial conditions: R 0 0 e 0 i
> Al on left (red) x

» Cu on right (blue)

» initial interface at x = 0.5 I
0.004

» Slip boundary conditions

» Symbols indicate where

Z 0
WENO used g
2
-0.004
-0.008
0 02 0.4 0.6 0.8 1
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A@F 2d underwater explosion

To test the method in the event
of large interface deformations con-
sider the problem of an underwater
explosion:

» Example from Liu et al., JCP
215 (2006)

» Water modelled using
stiffened gas EoS air
» Air and high-pressure gas water

ideal vy = 1.4 /p

> 1 level-set field high pressure gas
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Q@:E 2d underwater explosion




Q@:E 3d explosion in air

» Similar initial conditions to
underwater explosion but
with high pressure gas above
the surface

» Solid deforms inelastically
according to idealised
plasticity with von-Mises
yield surface

» Air and high-pressure gas
ideal vy =1.4







@E Summary

Summary:

» A three-dimensional cut-cell method has been developed for coupled solid/fluid
problems

» All variables are cell centred and grids remain fixed
» Method can handle largely distorting interfaces

» A hybrid method for the single component fluxes improves overheads, and paves
the way for implementation of turbulence models for fluids

Future work:
» V&YV; error analysis; cost analysis

AMR to improve efficiencies

“'

>
» incorporation of LES model (explicit LES)
>

particle based front tracking to improve mass
conservation

» improved constitutive models for solid
materials

u]
o)
|
i
it




	Models
	Cut-cell solver
	Interface Tracking
	Numerical methods for material components
	Examples
	Summary

