
A high order cell centred Lagrangian Godunov 

scheme for elastoplastic flow

Multimat 2013 in San Francisco

2nd-6th September 2013

Andrew Barlow

Computational Physics Group, AWE



2

Introduction (1)

� The staggered grid schemes employed in most hydrocodes have 
been remarkably successful.

� However, they clearly have some theoretical and practical 
deficiencies.

� High resolution cell centred Lagrangian Godunov schemes could 
overcome some of these problems.

� However, while Eulerian Godunov methods have been well 
established for a long time [Godunov (MS, 1959)] progress has 
been slow in extending these ideas to Lagrangian and ALE 
schemes. 

� This has largely been due to the difficulty in defining consistent 
Lagrangian nodal velocities with which to move the 
computational mesh. 
� CAVEAT scheme [Dukowicz et al. (LANL report, 1986)]
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Introduction (2)

� However, significant progress has been made recently in solving this 
problem:

� 3rd DG scheme [Loubere et al. (IJNF, 2004)]

� GLACE scheme [Despres and Manzeran (ARMA, 2005)]

� EUCCLYHD scheme [1] 

� Burton and Shashkov [2]

� A number of cell centred schemes have also now been successfully extended 
to provide a elastic-plastic flow [1,2].

_______________________________________________________________

[1] Maire P.-H., Abgrall R, Breil J, Loubere R, Rebourcet B, ‘A nominally 
second order cell-centered Lagrangian Scheme for Simulating elastic-plastic 
flows on two-dimensional unstructured grids’, Journal of Computational 
Physics 235, (2013) 626-665.

[2] Burton  DE, Carney TC, Morgan NR, Sambasivan SK, Shashkov MJ, ‘A 
cell-centered Lagrangian Goduno-like method for solid dynamics’, Comput. 
Fluids., 83, (2013), 33-47.
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Introduction (3)

� This talk will focus on the extension of a dual grid cell centred 

Lagrangian Godunov method [3,4] to provide an elastoplastic

flow capability and its performance on strength test problems.

� Numerical results will be compared with results obtained with 

Compatible FEM SGH [5].

____________________________________________________

[3] Barlow AJ, Roe PL, ‘A cell centred Lagrangian Godunov scheme for shock 

hydrodynamics’. Comput. Fluids., 46, issue1, (2011), 133-136.

[4] Barlow AJ, ‘A high order cell centred dual grid Lagrangian Godunov 

scheme’. Comput. Fluids., 83, (2013), 15-24.

[5] Barlow AJ, ‘A compatible finite element multi-material ALE hydrodynamics 

algorithm.’, Int. J. Numer. Meth. Fluids (2008); 56:953-964.



Transient dual grid idea

� All variables conserved at element centres.

� Nodal velocities are carried as an additional variable.

� Acceleration of nodes during the time step is calculated by 

solving an additional momentum equation on transient dual grid.

� Nodal velocities are used to calculate element strain rates.

� Stress deviators calculated as per Wilkins.

� The finite volume update of the conserved element centred 

variables is performed using fluxing volumes that are consistent

with the motion of the nodes.



Nodal acceleration calculation

� P* is required on each of the 
internal dual grid boundaries in 
order to solve the nodal momentum 
equation

� The P* and S* for each median 
mesh line is obtained by solving a 
collision Riemann problem using 
the zonal state variables and the 
nodal velocities.  
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Approximate Riemann Solver (1)

� Artificial viscosity methods are often designed to only act 

normal to the shock front or in the direction of the velocity 

jump.

� The same idea has been applied here to the acoustic approximate 

Riemann solver to make it into a simple multi-dimensional 

solver
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Approximate Riemann Solver (2)

where

� This effectively introduces linear and quadratic artificial 
viscosity like terms as suggested by Dukowicz.

� The sound speed is modified to include the elastic wave speed.
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Approximate Riemann Solver (2)

� The zonal and nodal momentum equations can now be written as

� The right hand side of these equations can now be viewed as the gathering 

of forces that are acting on a zone or node.

� From this analogy it is clear how to modify the total energy update to 

allow for the new approximate Riemann solver.

where ue is the average velocity of the two nodes defining edge e.
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Internal energy update

� Significantly improved results for solids are obtained by 

determining the internal energy from differences in total 

energy and kinetic energy rates as suggested by Don Burton.
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Time Discretization (1)

nodestux nnn

x ∀∆+=
+

2

1
2

1

cellsVV x
nn

∀






=
++

2

1
2

1
2

1

2

1

+
=

+

n

V

M e
n

ρ









=

+++
2

1

2

1
2

1

,
nnn

PP ρε Equation of State call

Predictor total energy update

Solve Riemann problem for Pn* Define edge velocity ue as average 

velocity of two nodes defining edge
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Time Discretization (2)

Acceleration 

calculation - centred 

pressure for 2nd order 

accuracy in time
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Solve Riemann problem for Pn+1/2* at cell boundaries

Zonal accelerations

Nodal accelerations

Solve Riemann problem for Pn+1/2* at dual mesh boundaries
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2nd order extension (1)

� Slope extrapolation is used to determine the velocities, 

pressures and stress deviators at the cell edges, when a solution 

to the Riemann problem is required across cell edges.

� Three slopes are calculated in volume coordinates in each 

isoparametric direction. 
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2nd order extension (2)

� A van Leer slope limiter is then use to define the slope use for

the extrapolation

� A second order approach is also used for the nodal velocities on

the dual grid when solving the nodal momentum equation. This 

appears to be more important for elastoplastic flow problems 

than pure hydrodynamic problems. 

� Currently limiting vectors and tensors component by 

component. This breaks symmetry and needs to be improved in 

the future.
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Cylindrical Geometry

� An area weighted approach has been taken to extend the method 
to cylindrical geometry.

� This effectively solves the two momentum equations as for 
plane geometry case.

� The total energy update is modified to account for the true swept 
volume associated with each edge in cylindrical geometry by 
simply using the expression for the average face centred velocity 
weighted by radius suggested by Pierre-Henri Maire [6]:

___________________________________________________

[6] Maire, P-H, ‘A high-order cell centred Lagrangian Godunov scheme for 
compressible fluid flows in two-dimensional cylindrical geometry’, Journal of 
Computational Physics, 228, (2009), 6882-6915.
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Treatment of free boundaries

� To maintain conservation the momentum and total energy 

fluxes must be zero across free boundaries.

� It is important to use what ever slope information is available 

in extrapolating inputs to the Riemann problem for cell 

adjacent to the free boundaries.



Wilkins Plate impact problem

� 1D Plate impact problem as defined by Wilkins (but 

using different EoS).

� 5 mm thick Al flyer travelling at 800 m/s strikes an 45 

mm thick Al target.

� Constant Yield strength Y=0.003 Mb and constant 

shear modulus µ=0.276 Mb.

� Initial density ρ=2.7 g/cc. Osbourne EoS.

� 1x500 mesh. 



Wilkins plate impact problem t=5.0 µµµµs



Wilkins plate impact problem t=5.0 µµµµs



Be Bending Beam

� Be bending beam is a purely elastic test problem

� Consisting of a rectangular plate of infinite extent in z-

direction with no supports or constraints with x and y 

dimensions of 6 and 1 cm respectively.

� Osbourne EoS, constant yield strength Y=1.0 Mb and 

constant shear modulus µ=1.51 Mb.

� The first flexural mode selected by an initial velocity 

distribution in y direction. 

� 60x40 mesh. 



Elastic Bending Beam - Density

Godunov SGH

t=7.5 µµµµs

t=22.5 µµµµs



Elastic Bending Beam - Density

Godunov SGH

t=37.5 µµµµs

t=52.5 µµµµs



Elastic Bending Beam - Energy

Godunov SGH



Taylor Ta Rod impact problem 15x200 mesh

SGH

Equivalent Plastic Strain at t=40 µµµµs

Godunov



SGH

Equivalent Plastic Strain at t=80 µµµµs

Godunov

Taylor Ta Rod impact problem



SGH

Equivalent Plastic Strain at t=120 µµµµs

Godunov

Taylor Ta Rod impact problem



Taylor Ta rod impact problem



Be Stopping Shell

� Be stopping shell, but 

run in plane geometry 

(same velocity drive as 

axisymmetric

definition).

� Mesh sensitivity 

assessed on 3 grids 

10x45, 20x45 and 

40x45.



Be Stopping Shell – Plastic work at t=145.0 µµµµs

SGH Lagrangian Godunov



Be Stopping Shell calculated with SGH



Be Stopping Shell - Lagrangian Godunov



Be Stopping Shell – Internal Energy at t=145.0 µµµµs

SGH Godunov
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Conclusion

� The dual grid cell centred Lagrangian Godunov scheme 
has been extended to provide elastoplastic flow 
capability. 

� Results have been presented for well known test 
problems and compared against those obtained with a 
staggered grid compatible finite element scheme.

� The numerical results are now in good agreement with 
those of well validated SGH code.

� Symmetry is a little worse due to component by 
component limiting of the vectors and tensors used in 
second order extension.



Future Work

� Move to consistent limiting of vector and tensor 

components to improve symmetry.

� Further verification and validation

� More rigorous comparisons against analytic solutions 

� Perform axisymmetric strength tests

� Start to model and compare against relevant experiments

� Extend method to ALE, slide, add additional physics 

and 3D.


